Grids That Communicate

Ever more power is being generated from renewable energy sources. However, because the supply from wind or the sun can fluctuate greatly, depending on the weather, operators must always have up-to-date information on the current condition of their grids. Composite hollow-core insulators filled with silicone gels and equipped with fiber-optic cables facilitate the installation of the required measuring instruments.

Finished silicone composite hollow-core insulators at Reinhausen Power Composites GmbH.

Europe’s electricity supply is changing – the electricity market is largely liberalized, cross-border power trading is on the rise and ever more wind and solar power units are joining the grid. In Germany, the government is promoting the switch to renewable energy sources with an ambitious energy-transition program. The amount of electricity derived from wind, the sun or hydropower is increasing in other regions of the world, too. The International Energy Agency (IEA) estimates that, by 2050, renewable energy sources will supply over a quarter of the electricity in the Middle East and more than 15 percent in China.

However, because wind turbines and photovoltaic systems depend on the weather in producing their power, it’s getting more and more difficult to balance electricity supply and demand. This influences grid stability and thus also supply security – the risk that the existing grids will collapse is increasing. In extreme-case scenarios, power failures pose a threat.

In order to guarantee high supply security, grid operators control and regulate the power supply. To do this, they continuously require extensive information on the immediate condition of their systems – they always have to know what’s happening in the grid at any given time. “Their information needs will continue to increase as a result of the renewable energy revolution,” predicts Renate Glowacki, who is responsible for WACKER SILICONES’ technical support for silicones in the transmission and distribution industry.

“The grids will be more flexible in the future than they are today and they will increasingly be able to control and regulate themselves,” continues Glowacki, who studied industrial engineering with a focus on electrical engineering. Industry visionaries are speaking of smart grids. However, even today, the grids are not entirely stupid, at least not high-voltage ones. Their switching stations contain measuring and sensor technology that continuously supplies up-to-date information – for example about the voltage, current or power line frequency. A digital information and communication system evaluates the data supplied, automatically initiates switching operations if necessary and forwards the information to the control room. There, technicians can take additional control and regulation measures.